Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun Wan, Chun-Li Li, Xue-Mei Li, Liang-Zhong Xu and Shu-Sheng Zhang*

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.050$
$w R$ factor $=0.149$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(1H-Benzotriazol-1-yl)-1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanone cyclohexane hemisolvate

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12}$, the disordered molecule of cyclohexane lies on a centre of symmetry. In the crystal structure, molecules are linked into double chains along the b axis by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

We have recently reported the structure of 2-(1H-benzo-triazol-1-yl)-1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone, (II) (Wan et al., 2005). In our ongoing search for new triazole compounds with higher bioactivity, the title compound, (I), was synthesized and we report its structure here.

(I)

The bond lengths and angles in (I) compare well with those in the related compound, (II). The benzotriazole moiety is essentially planar, with a dihedral angle of $0.5(1)^{\circ}$ between the rings $\mathrm{C} 9-\mathrm{C} 14$ and $\mathrm{N} 1-\mathrm{N} 3 / \mathrm{C} 9 / \mathrm{C} 14$. The mean plane of the benzotriazole group makes an angle of $70.2(1)^{\circ}$ with the $\mathrm{N} 4-$ $\mathrm{N} 6 / \mathrm{C} 15 / \mathrm{C} 16$ ring. The cyclohexane molecule lies on a centre of symmetry and atom C17 is disordered over two positions, with refined site occupancies of 0.44 (1) for atom C17A and 0.56 (1) for atom $\mathrm{C} 17 B$.

In the crystal structure of (I), molecules are linked into double chains by intermolecular $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N} 5$ and $\mathrm{C} 16-$ $\mathrm{H} 16 A \cdots \mathrm{~N} 3$ interactions (Fig. 2, Table 1). The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions involving the benzene rings: $C g 3 \cdots C g 3(-x,-y,-1-z)=3.755(2) \AA$, where $C g 3$ is the centroid of the C1-C6 ring.

Experimental

Bromine ($3.2 \mathrm{~g}, 0.02 \mathrm{~mol}, 50 \mathrm{ml}$) was added dropwise to a solution of 1-phenyl-2-($1 \mathrm{H}-1,2,4$-triazol-1-yl)ethanone ($3.7 \mathrm{~g}, \quad 0.02 \mathrm{~mol}$) and sodium acetate $(1.6 \mathrm{~g}, 0.02 \mathrm{~mol})$ in acetic acid $(50 \mathrm{ml})$. The reaction was maintained for about $2-3 \mathrm{~h}$ until the mixture turned colourless. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and the

Received 28 September 2005
Accepted 24 October 2005
Online 31 October 2005

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The cyclohexane solvent molecule has been omitted.
chloroform solution filtered. It was cooled with ice-water, and then an acetone solution (10 ml) of benzotriazole ($2.4 \mathrm{~g}, 0.02 \mathrm{~mol}$) and triethylamine ($2.8 \mathrm{ml}, 0.02 \mathrm{~mol}$) were added with stirring. The mixture was stirred at room temperature for about 2 h . The solution was then filtered, concentrated and purified by flash column chromatography (silica gel, petroleum ether-ethyl acetate, 3:1 v / v) to afford the title compound. Single crystals of (I) suitable for X-ray measurements were obtained by slow evaporation of an ethyl acetate-cyclohexane ($3: 1 \mathrm{v} / \mathrm{v}$) solution at room temperature over a period of one week.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12} \\
& M_{r}=346.39 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=8.9187(12) \AA \\
& b=8.3101(11) \AA \\
& c=25.367(3) \AA \\
& \beta=108.718(4)^{\circ} \\
& V=1780.6(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.292 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3808
\quad reflections
$\theta=2.4-25.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Plate, colourless
$0.30 \times 0.20 \times 0.09 \mathrm{~mm}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.975, T_{\text {max }}=0.992$
9620 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.149$
$S=0.94$
3479 reflections
246 parameters
H-atom parameters constrained

Figure 2
A packing diagram, viewed down the a axis. Hydrogen bonds are indicated by dashed lines. The cyclohexane solvent molecule has been omitted.

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).
$C g 3$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N} 5^{\mathrm{i}}$	0.98	2.48	$3.399(2)$	155
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{~N}^{\mathrm{ii}}$	0.93	2.57	$3.489(2)$	172
$\mathrm{C} 12-\mathrm{H} 12 A \cdots C g 3^{\mathrm{iii}}$	0.93	2.84	3.726	151

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z-\frac{1}{2}$; (ii) $x, y-1, z$; (iii) $-x,-y,-z-1$.
All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The distances $\mathrm{C} 19-\mathrm{C} 17 A$ and $\mathrm{C} 19-\mathrm{C} 17 B$ were restrained to be equal to within 0.002 Å.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Programme for New Century Excellent Talents in Universities (grant No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (grant No. J04B12).

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wan, J., Li, C.-L., Li, X.-M., Zhang, S.-S. \& Ouyang, P.-K. (2005). Acta Cryst. E61, o3232-o3233.

